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Viscous effects in a vertically propagating internal wave 

By D. GORDON AND T. N. STEVENSON 
Department of the Mechanics of Fluids, University of Manchester 

(Received 26 July 1972) 

A circular cylinder is positioned horizontally in an incompressible stably stratified 
fluid which has a constant Brunt-Vaisala frequency. A vertical two-dimensional 
internal wave is produced when the cylinder is oscillated at  this natural fre- 
quency. A small amplitude viscous similarity solution which explains the main 
features of the internal wave is presented. 

1. Introduction 
Small amplitude inviscid theory for internal waves in stably stratified fluids 

(Ghtler 1943; Mowbray & Rarity 1967) shows that the phase velocity, which 
is normal to the group velocity, is directed away from the vertical and shows that 
the group velocity vector approaches the vertical and decreases to zero magnitude 
as the forcing frequency increases towards the natural frequency of the fluid. 
In  this paper experiments are described in which a horizontal cylinder, in 
a stably stratified salt solution with constant natural frequency, is oscillated at  
this frequency. A narrow vertical two-dimensional internal wave is produced, 
and the phase velocities, which are directed away from the vertical, together with 
the fluid displacements within the wave are measured. 

A small amplitude viscous similarity analysis is shown to compare quite well 
with the main features of the experiment providing that the reflexions from the 
upper and lower surfaces of the working tank are taken into account. The analysis 
is similar to that used by Thomas & Stevenson (1972) for the viscous internal 
cross-wave. 

2. Analysis 
A horizontal two-dimensional body oscillates with frequency w in an un- 

bounded, incompressible, density stratified, non-diffusive fluid. A Cartesian 
co-ordinate system Ox'y' is chosen which is stationary relative to the undisturbed 
fluid with x' measured vertically upwards and y' measured horizontally, normal 
to the longitudinal axis of the cylinder (see figure 1, plate 1). The mean position 
of the body is on the x' axis. An exponential distribution of the background density 
po = p" exp ( - px') implies a constant Brunt-VaisalB frequency w = (gp)h, 
where q is the acceleration due to gravity andp" and p are constants. The velocity 
components in the x' and y' directions are u' and v' respectively, the density is 
p T ,  pT is the viscosity, pr is the pressure and t' is the time. The perturbation 
variables p' = pT-pO, p' = pT -po and p' = pdr -po are introduced, po and p o  
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being the background equilibrium values. The equations of continuity and 
incompressibility are 

and the perturbation momentum equations obtained by subtracting the hydro- 
static relations are 

(3) 
and 

The boundary conditions are that u', v', p', p' and their derivatives tend to zero 
as y' -+ +m. 

The variables are made dimensionless as follows: 

t' = tw-I ,  x' = xp-l, y' = yap-', p' = pap", 

u' = uagw-1, v' = vaagw-1, p' = pap*, p' = pa2agp"P-l, 

where ct = (w3v*2/g2)&, v* = ,u*/p*, p* is a constant reference viscosity and a is 
a constant amplitude coeficient. 

The experiments which are described in the next section show that the internal 
wave is confined to a narrow region close to the x' axis and that the particle 
oscillations are virtually along lines parallel to this axis. In  the analysis we assume 
that thevelocityin the y' direction is small compared with that in the x' direction 
such that a < 1. 

Equations (1)-(4) reduce to 

aupx + avpy = 0, 

@/at = uro + O(a),  

( 5 )  

(6) 

and 

where ro = po/p* = exp (-x) and yo = po/p*.  
With the assumption that a < a2 the dependent variables are expanded as 

u = u1+a2u2+ ...) 2, = v,+a2v2 ...) 

p = p1+a2p2 ..., p = p1+a2p 2." . 
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These are now substituted into (6)-( 8) and terms of like order in a2 are equated. 
In  the resulting linear system, a time dependence factor e-it is assumed and the 
equations reduce to 

irou1 = P1, (9) 

- ipz = uzro, (10) 

i?-OVl = aPlpY, (11) 

and 

The continuity equation allows us to introduce the stream function $(x, y) 
defined by u1 = a$/ay and v1 = - a$/ax with $(x, 00) = 0. 

pz and u2 are eliminated between (10) and (12) to give 

and (1 1) is written as 

From these equations it is evident that either pl is an even function of y and $ an 
odd function, or vice versa. 

The momentum flux condition is obtained by integrating (14) across the wave 
to yield 

[" p l a y =  J .  
J -m  

The constant J is assumed to be non-zero and so p1 is taken to be an even func- 
tion of y. A solution is sought in the interval 0 < y < + co, and may be continued 
into the interval - co < y < 0 by using 

IPl(X, -Y)  = P l ( X , Y )  and $(x, -Y)  = -$(X,Y). 

An integral condition on $ is obtained by multiplying (15) by y and integrating 
across the wave: 

where c is a constant. 
Equations (14) and (15) subject to the integral constraints (16) and (17) may be 

written as ordinary differential equations in the transformed co-ordinate system 
(x, 71, where g = y(e" + ~)1/(2m-2), 

providing y 0 -  - r(m+l)/(m-l)(1+ 0 cyo)Zm/(l-m) = ez(ez + c)Zm/(l-m) 

pl = (ez+c)1/(2-2m)P(q), $ = (ez+c)ml(m-l'F(g), where m is a constant; m $: 1. 
Equations (14) and (15) become 

and 
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Using the conditions as 7 -+ 00, equation (18) integrates to 

P = (m- 1)F/q,  (20) 

which is substituted into (19) to give 

The subscript refers to the value of the parameter m. The integral condition (1 7) 
becomes 

7Fmd7 = -&Jm. (22) 1: 
Equation (21)  is solved for Fnz subject to condition (22)  and the boundary 

conditions as 7 -+ 00. Analytic solutions exist for positive even integer values of 
the parameter m. The solutions for m = 0 and 2 are 

F2 = - i ( l - i )~-7exp[-$( l - i )q2] .  J2 

44n 
and 

For m z 2 the solutions are of the form 

Fm = 7 K j ( m - . 2 ) ( 7 2 )  ~ X P  [-{(I - i ) / h m > / ? l ,  
where A, is a positive real constant and K,.(x) is a complex polynomial in z of 
order r. 

For m = 4 the solution is 

[q3 - 15( 1 + i) 71 exp [-A( 1 - i) q2] .  F4 = (I-i)&- J4 

72( 3n)4 

The important dependent variables are found from 
(ex + c ) ( 2 m + ~ ) / z ( m - 1 ) p  m,  

U l m  = 

ulm = - [ 1 /2 (m - I ) ]  e"(ez + c)l'(m-l) (qPm+ 2m~,),  

plm = (m - 1 ) (ez + c)1/(2m-2) 1?~/7. 
p - i e-x(ez + C)(2m+1)/2(m-1) 

l m  - m 

and 

In this paper we are primarily interested in an internal wave solution which 
originates from a small forcing region near the origin so that, at  fixed 7, y -+ 0 
as x -+ 0. This condition, together with the conditions ro = yo = 1 at x = 0, is 
compatible with the m = 0 similarity solution providing that c = - 1. If Fo is 

Fo = - A  exp[-$(l-i)k2]dk 
written as 

fm .t 

the dependent variables are 

u1 = A(e"- l)-+exp[t(i- 1)72], 

v1 = &Aez(ez-l)-lyexp[t(i- l ) r 2 ] ,  

p1 = iAe-z(e"- l)-texp[$(i- 1)r2] 

p l  = i( 1 - i )  A(e" - I)-* exp [i(i - I) 721. and 

The implied relation between ro and yo is ro = yo1 and 7 = y(e"- I)-*. 
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I f = O  

FIGURE 2. Displacement profiles during a half cycle evaluated from (26). 

If the Boussinesq approximation had been made initially then the solution 
would be the same as the small x version of the above relations. In  this case, with 
the time dependency included and the real parts evaluated, we have 

u1 = ] A  I x-+ cos (&+- t + arg A )  exp ( - &72), (24) 
v1 = +lA I x-17 cos ($72 - t + arg A )  exp ( - $72), (25) 

p1 = IA I x-4 cos ($72-  t + arg A + &r) exp ( - &q2), (26) 

p I  = (IA1/~2)x-:cos(&72-t+argA-&~)exp( -$y2), (27) 

and the particle displacement d from the undisturbed position is equal to pl. 
In  these simplified equations 7 = y/xS. 

The phase lag tp relative to the phase along 7 = 0 is given by tp  = $p2.  The 
phase velocity is therefore directed away from the vertical axis and decreases as 
q increases. 

The solution to the Boussinesq equations is symmetrical about x = 0 and 
therefore (24)-(27) may be applied to the wave propagating downwards pro- 
viding that x is measured positively downwards. 

In  figure 2 a few displacement profiles during a half cycle show how the crests 
move outwards with time. The u and v velocities, the displacement and the 
perturbation pressure are shown at  two time instants in figure 3. 

3. Experiments 
A glass-sided tank 1.8m long, 0-9m high and 0.55m from front to back was 

filled with stratified brine which had an almost constant Brunt-Vaisala frequency 
of l.12rads-1. A horizontal circular cylinder was connected by a vertical strut 
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-0 -o.6 8 t 
(b) - 1.0 ---- - 14 c (0) L /'". 

FIGURE 3. The u and u velocity distributions, the displacement profile and the pressure 
distribution evaluated from (24) to  (27) at two instants of time ~ / 2 0  apart. (a)  t = 0. 
(b )  t = +7r. - - -, u,z&/lAl; - - - - - - , w,z/lAl: -, z@/ lAl ;  - - - -, p,zh/[Al. 

to a cam mechanism on a variable-speed gear-box driven by a synchronous 
electric motor above the tank. A cylinder of 6mm diameter spanned the tank 
and could be oscillated with simple harmonic motion normal to its longitudinal 
axis in any direction. 

The motion of neutrally buoyant oil drops formed from a mixture of di-ethyl 
pthalate and butyl pthalate was observed with a travelling microscope. Initially 
the cylinder was oscillated in a vertical plane and its amplitude was adjusted so 
that particle displacements within the wave were typically 0.2 mm, which was 
large compared with the diameter of the oil drops, about 0.01 mm. The maximum 
distance from the cylinder at which measurements were taken was 0-2m and, 
therefore, small compared with the stratification height P-l, which was 7.8m. 
Consequently, the experimental results will be compared with the solution of the 
Boussinesq equations. 

Particle movements were measured at  a position 60 mm vertically below the 
cylinder. Particle amplitudes at  various frequencies near to the natural frequency 
are shown in figure 4. The cylinder frequency was adjusted to coincide with the 
maximum displacement. Displacement profiles were then measured at  various 
x' positions and were found to be similar in shape to those predicted by the 
analysis close to the x' axis. However, the amplitude did not continue to decrease 
away from the axis and secondary peaks were consistently found either side 
of the central peak. These could be due to (u) an incorrect forcing frequency, 
( b )  variations of the Brunt-Vaisala frequency with altitude or (c) reflexions from 
the top and bottom of the tank. The forcing frequency was then changed, but 
this merely reduced the amplitudes within the wave; the secondary peaks re- 
mained and, therefore, were not due to (a). If the Brunt-Vaisala frequency of the 
fluid increased with distance from the cylinder then an internal wave initially 
propagating vertically would tend to become inclined away from the vertical, 
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FIGURE 4. Variation of particle amplitude with forcing frequency 
w, at 2' = -60 mm, y' = 0. 

as would the particle paths. The cylinder was repositioned so that an internal 
wave propagating in the opposite direction through the same portion of fluid 
could be observed. The cylinder frequency was adjusted as before and found to 
be the same as before but the displacement profiles still had the secondary peaks. 
If the Brunt-Vaisala frequency in the fluid had varied with height, then a 
different cylinder frequency would have been obtained and the displacement 
profiles would have had different properties because they would have been 
propagating into a fluid with a natural frequency varying in the opposite sense 
to that previously. As neither of these effects were present and as the particle 
paths remained in a vertical plane, ( b )  was not the answer. 

If the cylinder oscillated in the horizontal plane the amplitudes in the internal 
waves were very small and difficult to measure except when the amplitude of 
oscillation of the cylinder was large, in which case there was considerable 
turbulent mixing around the cylinder. Consequently, all detailed measurements 
were made with the cylinder oscillating in a vertical plane; the velocities along 
the x' axis above and below the cylinder were in phase with the cylinder. The 
analysis will now be extended to include reflexions from the top and bottom of 
the tank for this case. 

We assume that the body is midway between rigid horizontal reflecting surfaces 
distance h apart. The flow field is approximated by an image system designed 
to give zero u velocity at  the reflecting surfaces. The body and its images lie in 
a vertical plane and the distance between them is h. The phase difference between 
consecutive images is 7~ and the nth image above the body has the same phase as 
the nth image below the body, and if n is even, the phase is that of the body. 
X is the distance measured vertically upwards from the horizontal level of the 
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mean position of the body and x, is the distance between the mean position and 
the virtual origin, the point from which the wave appears to originate. 

The linear solution to the Boussinesq equations, equation (24), is applied to 
each image and the contributions are summed. For 0 Q X 6 +h the velocity is 

m 
+ z 2( - 1)n cexp ( - y2C2) cos (y2c2 - t 

n = l  

and for - +h Q X < 0, u ( X ,  y, t )  = u( - X ,  y, t ) ,  where [ = +(nh + x, + X)-4 and 
{ = &(nh + x, - X)-*. 

By expanding the cosine terms in this expression the velocity may be written as 

u = IA I (E2 + G2)6 cos (tan-l(G/E) - t )  

d = - ]A1 ( E  + G2)I sin (tan-l (G/E)  - t ) ,  

(28) 

(29) 

and the particle displacement as 

where E = B+D, G = C+H and 

m 

B = z 2( - l ) n  c exp ( - y2c2) cos (y2t2), 

C = z 2( - 1)n 6 exp ( - y2c2) sin (y2t2), 

n=O 

m 

n=O 

and 

m 

n = l  
D = z 2( - l)% cexp ( - y2c2) cos (y2C2) 

H = z 2( - 1)" {exp ( - y2c2) sin (y2c2). 
m 

n = l  

The displacement envelope is given by 

e = [ A  I (E2 + G2)* 

tx, = tan-l (G/E) ~f: Nn. 

(30) 

and the phase lag at an antinode, the value oft for which &/at = 0, is 

(31) 

velocity at  the reflecting surfaces will of course result in 
some viscous dissipation in the immediate vicinity of the wall, but this is not 
included in the analysis. In the experiments the cylinder was positioned roughly 
midway between the diffusion boundaries above the base of the tank and below 
the free surface, with h' values of 0.7 and 0.4m. The displacement envelopes 
evaluated from (30) using v = 1.3 mm2 s-l and h' = 0.7 m show secondary peaks 
either side of the central peak (see figure 5). Some experimental particle displace- 
ments along y' = 0 are shown to compare reasonably well with equation (30) 
in figure 6. All the experimental displacements have been multiplied by a constant 
amplitude coefficient as the theory will not predict the actual amplitude. 

Some theoretical and experimental displacement envelopes are compared in 
figure 7 .  The position of the peaks and the width of the waves agree quite well 

The small, finite, 
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FIGURE 5. The theoretical displacement envelopes a t  various 2’ positions. - - -, equation 
(30) when h + 00, i.e. with no reflexions; __ , equation (30) when h’ = 0.7 m. 

(v = 1.3 mmz s-l, w = 1.12 rad s-l, q, = 0.) 

but the amplitudes in the secondary peaks do not agree. This is not surprising 
in view of the simplified theoretical model used to describe the reflecting diffusion 
boundaries. The waves are obviously very sensitive to small changes in the 
forcing frequency. This is evident from figure 4 and also from figure 8 (plate 2 ) ,  
which shows schlieren photographs of the internal waves with forcing frequencies 
close to the natural frequency. The detailed measurements were within 0.5% 
of the natural frequency. 

Thomas & Stevenson (1972) used a schlieren system to measure the phase 
velocities in the internal cross-waves. It would be difficult to use this method for 
the vertically propagating wave because the phase velocity changes so much 
across the wave. The phase has been measured with a Disa quartz-coated fibre 
probe, 3 mm in length and 70pm in diameter, supported on a 200 mm horizontal 
arm connected to a vertical strut on a traversing mechanism. The fibre probe was 
used with a constant-temperature hot-wire anemometer set at  a low overheating 
ratio and the output was fed to an X ,  Y plotter. The phase of the output relative 
to the phase of the cylinder is compared with equation (31) in figure 9. Outside 
the primary wave the measured phase lag is slightly larger than the theoretical 
value. This may be due to (a) waves on the diffusion boundaries, (b)  the dis- 
turbance at  the horizontal level of the body, or (c) a phase lag introduced through 
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FIGURE 6. The theoretical and experimental variation of the maximum displacements 
along the centre-line of the wave. ---, theory, equation (30) with x,, = 0. Experimental 
results: x ,  h’ = 0.7 m, e M  = 0-75 mm; 0, h’ = 0.7 m, e M  = 0-5 mm; A, h’ = 0-4 m, 
eM = 0-12 mm. e M  is the maximum amplitude at z’ = 0.1 m, y’ = 0. (v = 1.3;mm2 S-I, 

w = 1.12 rad s-l.) 
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FIGURE 7. Theoretical and experimental displacement envelopes. Experimental results : 
- - - n - - - ,  x‘=35mm;  - - x - - ,  z ’=85mm;  --O----, z’=110mm. The 
maximum amplitude at  z’ = 0.1 m was 0.12 mm. The unbroken lines are from theory at 
the same values of x’ with z,, = 0. (h’ = 0-4 m, v = 1.3 m m a  s-l, o = 1.12 rad s-1.) 
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FIGURE 9. The phase lag across the wave at various values of x‘. --, equation (31) when 
h = 0.7 m; - - -, equation (31) when h + 03, i.e. with no reflexions; - - - , with n- 
phase shift. Experimental results: 0 ,  z’ = 20 mm; A, 2’ = 50 mm; + , m’ = 65 mm; 
0, z’ = 78 mm; v ,  x’ = 150 mm. The maximum amplitude at  x‘ = 0-1 m, y’ = 0 was 
0.5 mm. (h’ = 0.7 m, Y = 1.3 mm2 s-l, w = 1.12 rad s-l.) 

the small convection region around the probe. However, the theory with the 
reflexions certainly accounts qualitatively for the flow in the secondary peaks. 

In the theory it was assumed that a < a2 4 1. In  the experiments a2 was 
2 x 10-4 and the resulting condition on a implies that the particle amplitudes 
must be very much less than 1-5 mm. The conditions were satisfied by the set of 
results corresponding to an amplitude of 0.12 mm at the 0.1 m position but in 
the other experiments the amplitudes, although less than 1.5 mm, were rather 
large. 

4. Conclusions 
A vertically propagating internal wave corresponding to natural frequency 

oscillations has been generated and the main features have been described by 
a small amplitude similarity analysis. The centre-line velocity attenuates as 
(distance from the forcing region)-* and is, therefore, less than in the internal 
cross-wave, which attenuates as (distance)+. 
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